Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 17(12): e0278784, 2022.
Article in English | MEDLINE | ID: covidwho-2197056

ABSTRACT

Emergence of novel human pathogens pose significant challenges to human health as highlighted by the SARS-CoV-2 pandemic. Wastewater based epidemiology (WBE) has previously been employed to identify viral pathogens and outbreaks by testing samples from regional wastewater treatment plants. Near source tracking (NST) allows for more targeted WBE by analysing samples from individual buildings such as schools or even individual floors such as in multi-floor office buildings. Despite the public health advantages of WBE, few strategies exist for optimising NST sampling methodologies. Therefore, we developed a protocol to evaluate virus detection in NST sampling using Pepper Mild Mottle Virus (PMMoV) as a proxy for RNA viruses. PMMoV is the most abundant enteric human associated RNA virus and is present in peppers/pepper-containing foods. Two bespoke TaqMan RT-PCR assays were developed to detect a PMMoV genomic 5' region and a capsid associated gene. To evaluate the protocol against field samples, pepper homogenates were flushed down an in-use toilet (Liverpool School of Tropical Medicine, UK) to spike wastewater with PMMoV on multiple days, and samples collected from two sewage access points to validate NST samplers. These wastewater samples were assessed for PMMoV based on Ct values and results compared to pepper and Tabasco derived PMMoV positive controls. Positive detection of PMMoV was comparable and consistent in ten independent samples across two NST samplers regardless of pepper homogenate spiking. We have developed two novel one step TaqMan assays that amplify both PMMoV targets in viral RNA extractions from peppers, Tabasco, and wastewater samples with cDNA synthesis through to RT-PCR results taking approximately 30 minutes. Pepper homogenate flushing was not required to detect PMMoV in our wastewater samples, however this strategy of flushing PMMoV containing materials outlined here could be valuable in assessing and validating NST in buildings with no previous or current sewage flow.


Subject(s)
COVID-19 , Tobamovirus , Humans , Wastewater , Reverse Transcriptase Polymerase Chain Reaction , Sewage , Wastewater-Based Epidemiological Monitoring , SARS-CoV-2/genetics , Tobamovirus/genetics
2.
Sci Total Environ ; 848: 157613, 2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-1956330

ABSTRACT

Several virus concentration methods have been developed to increase the detection sensitivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater, as part of applying wastewater-based epidemiology. Polyethylene glycol (PEG) precipitation method, a method widely used for concentrating viruses in wastewater, has some limitations, such as long processing time. In this study, Pegcision, a PEG-based method using magnetic nanoparticles (MNPs), was applied to detect SARS-CoV-2 in wastewater, with several modifications to increase its sensitivity and throughput. An enveloped virus surrogate, Pseudomonas phage φ6, and a non-enveloped virus surrogate, coliphage MS2, were seeded into wastewater samples and quantified using reverse transcription-quantitative polymerase chain reaction to assess the recovery performance of the Pegcision. Neither increasing MNP concentration nor reducing the reaction time to 10 min affected the recovery, while adding polyacrylic acid as a polyanion improved the detection sensitivity. The performance of the Pegcision was further compared to that of the PEG precipitation method based on the detection of SARS-CoV-2 and surrogate viruses, including indigenous pepper mild mottle virus (PMMoV), in wastewater samples (n = 27). The Pegcision showed recovery of 14.1 ± 6.3 % and 1.4 ± 1.0 % for φ6 and MS2, respectively, while the PEG precipitation method showed recovery of 20.4 ± 20.2 % and 18.4 ± 21.9 % (n = 27 each). Additionally, comparable PMMoV concentrations were observed between the Pegcision (7.9 ± 0.3 log copies/L) and PEG precipitation methods (8.0 ± 0.2 log copies/L) (P > 0.05) (n = 27). SARS-CoV-2 RNA was successfully detected in 11 (41 %) each of 27 wastewater samples using the Pegcision and PEG precipitation methods. The Pegcision showed comparable performance with the PEG precipitation method for SARS-CoV-2 RNA concentration, suggesting its applicability as a virus concentration method.


Subject(s)
COVID-19 , Magnetite Nanoparticles , Humans , Polyethylene Glycols , RNA, Viral , SARS-CoV-2 , Tobamovirus , Wastewater
3.
Arch Microbiol ; 204(8): 513, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1941517

ABSTRACT

The plant pathogen pepper mild mottle virus (PMMoV) has recently been proposed as a water quality indicator, it is a RNA virus belonging to the genus Tobamovirus in the family Virgoviridae that causes harm to the pepper crops. After consuming processed food products containing infected peppers, such as hot sauces, PMMoV is excreted in high concentrations in feces; therefore, this is the most common RNA virus, constantly found in the feces of humans. The fecal-oral pathway is emerging as an environmental problem. The presence of high concentrations of pathogens associated with human excreta in environmental waters or water reuse supplies poses a threat to public health. Due to the difficulty in determining the presence of pathogens effectively in water, attempts to monitor microbial water quality often use surrogates or indicator organisms that can be easily detected; therefore, PMMoV is used as a viral surrogate in aquatic environment. This paper describes the incidence and persistence of PMMoV in aquatic environments and in waste treatment plants and its usefulness for quantifying virus reductions by advanced water treatment technologies. In recent research, SARS-CoV-2 was reported to be found in wastewater and utilized for the purpose of monitoring coronavirus illness outbreaks. Since PMMoV is readily identified in the human feces and can also serve as an indicator of human waste, the determined PMMoV concentrations may be utilized to give the normalized report of the SARS-CoV-2 concentration, so that, the amount of human waste found in the wastewater can be taken into consideration.


Subject(s)
COVID-19 , Tobamovirus , Feces , Humans , SARS-CoV-2 , Tobamovirus/genetics , Wastewater , Water Microbiology
4.
Sci Total Environ ; 807(Pt 2): 150722, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1447139

ABSTRACT

Polyethylene glycol (PEG) precipitation is one of the conventional methods for virus concentration. This technique has been used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. The procedures and seeded surrogate viruses were different among implementers; thus, the reported whole process recovery efficiencies considerably varied among studies. The present study compared five PEG precipitation procedures, with different operational parameters, for the RT-qPCR-based whole process recovery efficiency of murine hepatitis virus (MHV), bacteriophage phi6, and pepper mild mottle virus (PMMoV), and molecular process recovery efficiency of murine norovirus using 34 raw wastewater samples collected in Japan. The five procedures yielded significantly different whole process recovery efficiency of MHV (0.070%-2.6%) and phi6 (0.071%-0.51%). The observed concentration of indigenous PMMoV ranged from 8.9 to 9.7 log (8.2 × 108 to 5.6 × 109) copies/L. Interestingly, PEG precipitation with 2-h incubation outperformed that with overnight incubation partially due to the difference in molecular process recovery efficiency. The recovery load of MHV exhibited a positive correlation (r = 0.70) with that of PMMoV, suggesting that PMMoV is the potential indicator of the recovery efficiency of SARS-CoV-2. In addition, we reviewed 13 published studies and found considerable variability between different studies in the whole process recovery efficiency of enveloped viruses by PEG precipitation. This was due to the differences in operational parameters and surrogate viruses as well as the differences in wastewater quality and bias in the measurement of the seeded load of surrogate viruses, resulting from the use of different analytes and RNA extraction methods. Overall, the operational parameters (e.g., incubation time and pretreatment) should be optimized for PEG precipitation. Co-quantification of PMMoV may allow for the normalization of SARS-CoV-2 RNA concentration by correcting for the differences in whole process recovery efficiency and fecal load among samples.


Subject(s)
Bacteriophages , COVID-19 , Murine hepatitis virus , Animals , Humans , Mice , Polyethylene Glycols , RNA, Viral , SARS-CoV-2 , Tobamovirus , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL